Maximum Likelihood-Like Estimators for the Gamma Distribution

نویسندگان

  • Zhi-Sheng YE
  • Nan CHEN
چکیده

It is well-known that maximum likelihood (ML) estimators of the two parameters in a Gamma distribution do not have closed forms. This poses difficulties in some applications such as real-time signal processing using low-grade processors. The Gamma distribution is a special case of a generalized Gamma distribution. Surprisingly, two out of the three likelihood equations of the generalized Gamma distribution can be used as estimating equations for the Gamma distribution, based on which simple closed-form estimators for the two Gamma parameters are available. Intuitively, performance of the ML-like estimators should be close to the ML estimators. The study consolidates this conjecture by establishing the asymptotic behaviours of the new estimators. In addition, the closed-forms enable bias-corrections to these estimators. The bias-correction significantly improves the small-sample performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Maximum Likelihood Estimators for some Generalized Pareto-like Frequency Distribution

Abstract. In this paper we consider some four-parametric, so-called Generalized Pareto-like Frequency Distribution, which have been constructed using stochastic Birth-Death Process in order to model phenomena arising in Bioinformatics (Astola and Danielian, 2007). As examples, two ”real data” sets on the number of proteins and number of residues for analyzing such distribution are given. The co...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Parameters Estimation of the Gamma Distribution in the Presence of Outliers Generated from Gamma Distribution

The maximum likelihood, moment and mixture of the estimators are derived for samples from the gamma distribution in the presence of outliers generated from gamma distribution. These estimators are compared empirically when all parameters are unknown; their bias and mean squares error are investigated with the help of numerical technique. We have shown that these estimators are asymptotically un...

متن کامل

Estimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data

This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...

متن کامل

Analysis of Hybrid Censored Data from the Lognormal Distribution

The mixture of Type I and Type II censoring schemes, called the hybrid censoring. This article presents the statistical inferences on lognormal parameters when the data are hybrid censored. We obtain the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the unknown parameters. Asymptotic distributions of the maximum likelihood estimators are used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015